Mathematics Mastery vocabulary list

This document highlights the vocabulary introduced throughout the primary curriculum - from Reception to Year 6.

The vocabulary listed here is vocabulary that pupils are expected to use and understand on a daily basis within that year group, though the definitions are written for teacher reference and would not necessarily be shared with children as they stand. The vocabulary listed is cumulative and builds on the vocabulary previously introduced. Teachers should also consult with the Mathematics Mastery Primary Glossary.

This is a working document and will be updated as required.

Reception	Definition	Example
Above	Used to describe a higher position than another object.	The Maths Meetings board is above the sink.
Add	Carry out the process of addition.	I can add two numbers together to find a total.
Addition	The operation to combine at least two numbers or quantities to form a further number or quantity, the sum or total. Addition is the inverse operation to subtraction.	Three plus seven is equal to ten. This is an addition equation.
Altogether	In total.	That will be £2 altogether please.
Balance	A measuring tool used to weigh objects. It has two dishes hanging on a bar. Both dishes will be level when the contents weigh the same. Also, as a verb, indicates equivalence and equality.	The objects in the balance are unequal in weight because the dish on the right side is lower down that the dish on the left side. The two objects balance which means they have the same mass.
Before	In front of or prior to.	The number ' 3 ' comes before ' 5 ' on the number line.
Below	Used to describe a lower position than another object.	The sink is below the Maths Meetings board.
Between	Indicates a position in relation to two other places or objects on either side.	The teacher is standing between two tables.
Capacity	The amount of liquid a container can hold.	This cup is full to capacity because it cannot hold any more water.
Circle	The name of a 2-D shape. A circle has a curved side.	
Clock	A tool used to measure time.	The clock shows us that the time is now 2 o'clock.
Compare	Look for similarities and/or differences between at least two objects or sets.	I can compare these two sets - this set has more.
Corner	A point where two or more lines meet. The correct mathematical term is vertex (vertices).	The table has four corners (vertices).
Cost	A monetary value assigned to a good or service.	This apple costs 10p. What coin could I use to pay for it?

Count	Assigning one number name to each of a set of objects to determine how many there are.	I counted the children in the group there are four so we will need four pencils.
Cube	A 3-D shape with six identical square faces.	
Cuboid	A 3-D shape with six rectangular faces.	
Curved surface	A non-plane surface of a 3-D shape. Both cones and cylinders have curved surfaces.	The cone has a curved surface.
Cylinder	A 3-D shape with two circular faces joined by a curved surface.	
2-D	Abbreviation for two-dimensional. A figure is two-dimensional if it lies on a plane.	A square is a 2-D shape.
3-D	Abbreviation for three-dimensional. A solid is three-dimensional and occupies space.	A cylinder is a 3-D shape.
Describe	To express mathematical features, qualities and details in words.	Can you describe the properties of a cube?
Difference	The numerical difference between two numbers or sets of objects. It is found by comparing the quantity of one set of objects with another.	The difference between ten and six is four.
Direction	The orientation of a line in space.	Which direction should we jump forwards or backwards?
Distance	A measure between two points or things.	The distance between my house and the school is longer than that between the school and the train station.
Double	To multiply by two or add a value to itself.	Ten is double five.
Edge	A line segment joining two vertices of a plane figure (2-D shape) and the intersection of two plane faces (in a 3-D shape).	A triangle has three edges and a cube has 12 edges.
Empty	Containing nothing. Most commonly used in the context of measures.	There is no more water left in the jug - it is empty.
Equal	Indicates equivalence between two values and can be expressed with the symbol ' x '. The symbol is read as 'is equal to' which means the same as. Expressions on either side of the symbol have the same value.	My sets are equal because there are four bears in this set and there are four bears in this set.
Face	One of the plane surfaces of a solid shape.	A cube has six faces.

Fewer	A lesser amount - used when counting discrete objects, i.e. countable objects such as, pens, teddies, counters, etc.	There are fewer buttons on my coat than yours.
First	Comes before all others in time or position.	First I brush my teeth. Then I go to bed.
Flat	A level surface.	The table has a flat rectangular surface.
Full	Contains/holds as much or as many as possible; has no empty space.	The juice carton is not full because I drank some.
Group	To make equal size groups. This is one model for division.	I will group the crayons equally so that each person gets two.
Half	One of two equal parts of a shape, quantity or object.	I have shared the dolls into two equal groups - I have half and you have half.
Intersection of sets	Where the two subsets overlap in a Venn diagram. Objects or values which belong to both subsets are placed here.	The number 4 belongs in the intersection because it is even and less than 5.
Last	Comes after all others in time or order.	Rory is the last person in the line.
Length	A linear measurement.	The length of my snake is shorter than yours.
Less	A smaller amount or not as much.	I have 15p and you have 7 p. you have less money than me.
Line	A set of adjacent points that has length but no width.	I have drawn a line matching the number four with the four ducks.
Long	An adjective used to describe length.	I have a long piece of string.
Mass	A measure relating to the amount of matter within a given object.	The mass of the school bag is greater than the mass of the book.
Measure	To find the size of something in a given unit.	How might we measure how much flour we need to bake a cake?
Minus	A name for the symbol '-', which denotes the operation of subtraction.	Three minus one is equal to two.
More	A greater amount.	I have six apples and you have two. I have more.
Next	Comes immediately after the present one in order.	The next shape in my pattern is a square.
Number bond	A pair of numbers with a given total.	Five and four make a number bond to nine.
Number line	A linear, continuous representation of number. Each number occupies a point on the line, and there is an equal interval between each number.	This number line starts at zero and ends at ten.
Number track	A linear, discrete representation of number. Each number is positioned in a square on the track.	I can count from one to ten, moving a counter along this number track.
Order	Describes the placement of items according to given criteria or in a pattern. As a verb, to place items according to given criteria or in a pattern.	I have ordered the bears from smallest to biggest.

Pair	A set of two things used together.	Socks come in a pair - one for each foot.
Pattern	A systematic arrangement of numbers, shapes or other elements according to a rule.	The pattern is red, blue, red, blue, red blue.
Plus	The word representing the operation of addition. It is also the name for the symbol ' + '.	Five apples plus two apples are equal to seven apples.
Rectangle	A quadrilateral with four right angles.	
Second	1. A unit of time. 2. An ordinal number.	Mohsin is second in the line today.
Sequence	A series of numbers or other elements which follow a rule.	The number 3 is next in the sequence because each number is one less than the one before.
Set	A defined group of objects, numbers or other elements.	I have placed all the purple counters in this set because they are all the same colour.
Share	To distribute fairly between a given number of recipients. This is one model for division.	I will share the crayons equally between the people at the table.
Short	An adjective used to describe length.	This string will not reach to the door. It is too short.
Side	A straight line that forms part of the boundary of a shape.	This shape has four straight sides.
Size	An element's overall dimensions or magnitude.	The size of my shoe is smaller than my teacher's.
Sort	To organise a set of elements into specified categories.	I will sort these objects based on their size.
Square	A quadrilateral with four equal length sides and four right angles.	
Straight	A line or movement uniform in direction, without bends or curves.	The walls of the school are straight.
Subtract	Carry out the process of subtraction.	Nine subtract three is equal to six.
Subtraction	The inverse operation to addition.	We are taking some away so it is a subtraction question.
Sum	The result of one or more additions.	The sum of five and three is eight.
Surface	An outer boundary of a 3-D object.	This cone has a curved surface.
Take away	Used in the reduction structure of subtraction. To remove a number of items from a set.	He ate three of the sweets so we need to take away three counters.
Tall	Measuring a specific distance from top to bottom.	Our class teacher is not as tall as our head teacher.
Time	Related to duration. Measured in seconds, minutes, hours, days, weeks, months, years etc.	After lunch it will be time for P.E.
Total	The sum found by adding.	There are a total of five people at this table.
Triangle	A polygon with three sides.	

Venn diagram	Two or more circles which represent given sets and intersect according these.	
Vertex (pl. vertices)	The point at which two or more lines intersect.	This shape has five vertices.
Weight	The force exerted on an object by gravity. Weight therefore changes with a change in gravitational force. Used interchangeably with mass until KS2.	The weight of this book is heavier than the pencil.
Zero	The number before one. It is neither positive nor negative.	Zero comes before one on the number track.

Year 1	Definition	Example
Analogue clock	A clock with a face and hands.	
Anticlockwise	Movement in the opposite direction to the motion of the hands of a clock.	
Approximate	The number is not exact but it is close.	Our PSHE lesson lasts approximately half an hour.
Array	An arrangement of counters or numbers, in columns and rows, used to represent multiplication and division	This array shows $3 \times 4,4 \times$ $3,12 \div 4$ and $12 \div 3$
Block graph	The pre-cursor to the bar graph, this representation of data has an x - and y-axis and one block represents one item. Each block is adjoined to the adjacent block.	How children travel to school
Chart	A table or graph.	I will mark one day for the sun on our weather chart.
Chronological	In time order.	I ordered the events in my day chronologically. I woke up, ate my breakfast, went to school then came home.
Clockwise	Movement in the direction of the hands of a clock.	C

Cone	A 3-D shape with one circular plane face, which tapers to an apex.	
Continuous surface	An outer boundary of a 3-D object which is uninterrupted by any plane surfaces.	A sphere has a continuous surface.
Data	Quantitative information which has been counted or measured.	This block graph shows us data for the colour of the cars in the car park.
Decreasing	Becoming smaller in value. Used in relation to number sequences.	$15,14,13,12$. This number pattern is decreasing by one each time.
Diagram	An illustration, drawing or representation.	I will draw a diagram to show how I programed my floor toy to move.
Digit	One of the ten Arabic numerals 0 to 9 , from which we compose numbers.	The number 54 has the digit five in the tens column and the digit four in the ones. The digit five has a value of fifty.
Divide	To share or group into equal parts.	I can divide 12 by three using grouping or sharing.
Estimate	An appropriately accurate guess, depending on the context and numbers involved.	I estimate there are eight cubes in the cup because it looks about double four but fewer than ten.
Even number	A number with a $0,2,4,6$ or 8 in the ones and therefore exactly divisible by two.	32 is an even number.
Facts	Related to the four operations (+, -, x, \div). Pupils should be supported in achieving fluency, i.e. very fast recall, in these facts. These then become known facts.	Number bonds to and within 10 and 20 are facts, e.g. $3+7=10$.
Fraction	1. A part of a whole number, quantity or shape. 2. Expressing a division relationship between two integers in the form $\frac{a}{b}$.	I have shared my sweets into four equal parts. Everyone will get a fraction of the whole quantity of sweets. One group is a quarter of the whole.
Half turn	A 180 degree rotation, i.e. $\frac{1}{2}$ of a 360 degree or 'full' turn.	
Hour	A unit of time.	There are 24 hours in one day.
Increasing	Becoming greater in value. Used in relation to number sequences.	$2,4,6,8$. This number pattern is increasing by two each time.
Kilogram	A standard unit of mass, equal to 1000 grams.	The book has a mass of two kilograms.
Known fact	A number fact which has been committed to memory (or very fast recall) and can be applied fluently to various calculation strategies.	When I use the 'Make ten' strategy to add, I use known facts to partition the number l'm adding.
Left	Indicating the position or direction.	Make a quarter turn left and walk forward three steps.
Litre	A standard unit of volume, equal to 1000 millilitres.	The capacity of the jug is about half a litre.

Mental calculation	A calculation performed without using a formal written strategy. Simple jottings may aid a mental calculation.	14 plus 5 is equal to 19 . I completed this using a mental calculation and deriving facts because I know that four plus five is equal to nine.
Metre	A standard unit of measure, equal to 100 centimetres.	I estimate that the table is about a metre tall.
Minute	A unit of time.	We will have lunch in five minutes.
Oblong	A quadrilateral with two pairs of parallel sides of equal length.	
Odd number	An integer which is not divisible by two without a remainder.	All numbers which end in 1, 3, 5, 7 and 9 are odd numbers.
Partition	To split a number into two or more parts.	The number 23 can be canonically partitioned (by place value) into 20 and 3 , or non-canonically partitioned in many different ways, including 18 and 5, 17 and 6, etc.
Place value	A system for writing numbers, in which the value of a digit is defined by its position within the number.	In the number 452 written in base ten, the digit four has a value of 400 , the five has a value of 50 and the two has a value of two.
Position	Location, expressed either descriptively using positional prepositions, or specified by coordinates.	The book is on the table. The clock is hanging above the board.
Pound (sterling)	The official currency of the United Kingdom.	Pounds sterling are written using the $£$ symbol. There are 100 pence in one pound sterling.
Property	Any attribute.	A property of a triangle is that it has three straight sides and three vertices, the sum of whose angles is 180 degrees.
Pyramid	A 3-D shape with a polygonal base and otherwise triangular faces, which form edges with the base, and which meet at an apex.	
Quantity	An amount, in some cases given a numerical value.	A quantity of apples is placed on the left-hand side of the balance. How many kilogram masses will we need to place on the right to balance the apples?
Quarter	One of four equal parts of a whole, quantity or object.	I have shared the eight conkers into four equal groups - I have two conkers, which is one quarter of the whole.
Quarter turn	A 90-degree rotation, i.e. $\frac{1}{4}$ of a 360 degree 'full' turn.	
Repeated addition	A structure of multiplication where equal parts are added to make a whole.	I can show 4×5 as repeated addition: $4+4+4+4+4$.

Repeated subtraction	A structure of division, where equal parts are subtracted and the number of equal parts summed to calculate a quotient.	I can use repeated subtraction to calculate 20 divided by four: 20-4-4-4-4-4.
Represent	To express or show a mathematical concept using words, numerals and symbols, pictures, diagrams, or concrete manipulatives.	I have used three blue cubes to represent the three oranges in the question. I used a part-whole model to represent the addition question.
Right	Indicating the position or direction.	The picture is on the right-hand side of the board.
Rule	A consistent pattern which allows generalisation. Awareness of a rule allows a pupil to continue a sequence or generate a related sequence.	$2,5,8,11,14 \ldots$ The rule is that each number is three greater than the previous number. Therefore, the next number in this sequence will be 17 .
Scales	An object used to measure mass.	The scales showed that the banana had a greater mass than the apple.
Sign	Synonymous with symbol in its mathematical context, e.g.,,$+- x$, $\div=$.	$20 \square 5=4$. What is the missing sign?
Standard unit	A uniform measure, agreed upon as standard.	Standard units of mass include grams and kilograms. Standard units of length include centimetres, metres and kilometres. Standard units of volume and capacity include millilitres and litres.
Sphere	A 3-D shape with a continuous surface, which is at all points equidistant from its centre. It has an infinite number of flat faces and straight edges.	A bowling ball is a sphere.
Symbol	Synonymous with sign in its mathematical context, e.g.,,$+- x$, $\div=.$	$20 \square 5=4$. What is the missing symbol?
Table	A structure organised into columns and rows, in which data can be recorded.	The information for Thursday is not yet complete on the table because it is only Wednesday.
Turn	Rotation (see half and quarter turn).	A whole turn is 360 degrees. A half turn is 180 degrees. A quarter turn is 90 degrees.
Unit	1. An element considered as a single entity. Ten single cubes can be grouped together to make a unit of ten. 2. A unit of measure, which can be standard or nonstandard.	I regrouped ten ones for one unit of ten. Unifix cubes can be used as units of measure, but these are not standard units.
Volume	A quantity or amount of any substance and the 3-D space it fills.	The bottle contains a volume of one litre but its capacity is two litres. The bottle is half full.

Year 2	Definition	Example
Angle	The amount of turn, measured in degrees.	The angle is 60 degrees.
Calculate	To compute or work out mathematically.	Can you calculate the answer to $13+4$?
Centimetre	A metric unit of length.	The book is 15 centimetres long.
Column	A vertical arrangement of numbers or objects.	23 has two tens - I will place them into the tens column.
Commutative	A property of addition and multiplication. It does not matter in which order the addends or factors are added or multiplied; the result will be the same.	$\begin{aligned} & 4+6=10 \\ & 6+4=10 \end{aligned}$ This demonstrates that addition is commutative. Arrays demonstrate the commutativity of multiplication, i.e. $3 \times 4=4 \times 3$
Consecutive	Following in order.	$2,3,4,5,6$ are consecutive numbers. 3 , 6 and 9 are consecutive multiples of 3 .
Denominator	The number written below the vinculum in a fraction. In a measure context, it indicates the number of equal parts into which the whole is divided. In a division context, it is the divisor.	In the fraction one quarter, four is the denominator.
Division	The process of partitioning a whole into equal parts.	12 divided by 3 is equal to 4 .
Efficient	Well-organised. Choosing an efficient computation strategy requires consideration of the numbers involved and will normally utilise 'known facts'.	I will use my number bonds knowledge to calculate $22+7$ efficiently. I know that 2 +7 is equal to 9 , so the answer is 29 . That's more efficient that counting on seven.
Frequency	The number of times something occurs within a data set.	4 pupils have brown hair. The frequency of brown hair is 4 .
Gram	A metric unit of mass.	The pencil weighs 20 grams.
Heptagon	A polygon with seven sides and seven angles.	\sim
Hexagon	A polygon with six sides and six angles.	2
Inverse operations	Opposite operations that 'undo' each other.	Addition and subtraction are inverse operations.
Millilitre	A metric unit of capacity/volume.	The can of fizzy drink has a capacity of 330 millilitres.
Multiple	The result of multiplying a number by an integer, for example, 12 is a multiple of 3 and 4 because $3 \times 4=$ 12.	36 is a multiple of three because three multiplied by 12 is equal to 36 . It is also a multiple of 12 for the same reason (and 1, 2, 4, 6, 9, 18 and 36).
Multiplication	One of the four mathematical operations. Multiplication can be understood as repeated addition or scaling (introduced in Year 3).	The multiplication symbol is \times.
Multiply	To increase a quantity by a given scale factor.	I can multiply 3 by 4 which is equal to 12.

Near double	When two numbers involved in an addition are close in value, such as $23+22$. The numbers can be treated as exact doubles, followed by compensating.	To calculate $23+22$, I can use the near double strategy. I can double 22 and then add one more.
Non-unit fraction	A fraction with a numerator greater than one.	Two thirds is a non-unit fraction.
Numerator	The number written above the vinculum in a fraction. In a measure context, it indicates the specified number of parts out of the whole. In a division context, it is the dividend.	In the fraction one quarter, one is the numerator.
Octagon	A polygon with eight sides and eight angles.	 \sim
Operation	A mathematical process. The four mathematical operations are addition, subtraction, multiplication and division.	$4+2=6$. The operation is addition.
Pentagon	A polygon with five sides and five angles.	
Pictogram	A representation of data using pictures or symbols.	Countries people visited
		camay 0000
		${ }^{\text {mamasa }}$ O-
Quadrilateral	A 2D shape with four sides and four angles. which add up to 360 degrees.	
Relationship	The way in which two or more things are connected.	The relationship between addition and subtraction is that they are the inverse of each other.
Right angle	An angle of 90 degrees.	A square has four right angles.
Rotation	The act of rotating about an axis/centre.	I will rotate the square 90 degrees clockwise.
Scale	Equally spaced markings on a measuring device which can be read to quantify a measurement	Using the scale on the ruler, the book measures 15 cm .
Symmetry	A shape is symmetrical when it fits exactly onto itself when folded in half.	This triangle has one line of symmetry.
Tally	A form of counting. Each tally is a vertical mark. After the fourth vertical mark, a fifth	Four children have black hair; I will record this as four tallies.

ハ
Mathematics
Mastery

	horizontal/diagonal mark is drawn to create a group of five.	
Temperature	The measure of heat.	Outside has a temperature of 15 degrees Celsius.
Unit fraction	A fraction with a numerator of one.	One-third is a unit fraction.
Vinculum	A horizontal line that separates the numerator and the denominator in a fraction.	$\frac{1}{4} \longleftarrow \quad$ vinculum

$\left.\left.\begin{array}{|l|l|l|}\hline \text { Year 3 } & \text { Definition } & \text { Example } \\ \hline \text { Acute angle } & \begin{array}{l}\text { An angle that is smaller than a } \\ \text { right angle. }\end{array} & \begin{array}{l}\text { It is smaller than my right angle checker } \\ \text { so this must be an acute angle. }\end{array} \\ \hline \text { Axis (plural: axes) } & \begin{array}{l}\text { A real or imaginary reference } \\ \text { line. The y-axis (vertical) and x- } \\ \text { axis (horizontal) on charts and } \\ \text { graphs are used to show the } \\ \text { measuring scale or labels for the } \\ \text { variables. }\end{array} & \begin{array}{l}\text { The y-axis on this bar graph shows you } \\ \text { how many pupils preferred each colour. }\end{array} \\ \hline \text { Bar graph } & \begin{array}{l}\text { A representation of data in } \\ \text { which the frequencies are } \\ \text { represented by the height or } \\ \text { length of the bars. }\end{array} & \begin{array}{l}\text { This bar graph shows us the preferred } \\ \text { colours of the pupils in our Year 3 class. }\end{array} \\ \hline \begin{array}{l}\text { Columnar } \\ \text { addition/subtraction }\end{array} & \begin{array}{l}\text { The formal written algorithms for } \\ \text { addition and subtraction that are } \\ \text { exemplified in Mathematics } \\ \text { Appendix 1 of the 2014 national } \\ \text { curriculum. }\end{array} & \begin{array}{l}\text { Solve the following calculations by using } \\ \text { the appropriate method of columnar } \\ \text { addition or subtraction. }\end{array} \\ \hline \text { Factor } & \begin{array}{l}\text { A number, that when multiplied } \\ \text { with one or more other factors, } \\ \text { makes a given number. }\end{array} & \begin{array}{l}\text { The number six has four factors: 1, 2, 3 } \\ \text { and 6. }\end{array} \\ \hline \begin{array}{l}\text { Formal written } \\ \text { methods }\end{array} & \begin{array}{l}\text { Exemplified in Mathematics } \\ \text { Appendix 1 (see above). As well } \\ \text { as including columnar addition } \\ \text { and subtraction, these also } \\ \text { consist of written algorithms for } \\ \text { multiplication and division. }\end{array} & \begin{array}{l}\text { Pupils should only use formal written } \\ \text { methods for calculations that cannot be } \\ \text { efficiently calculated using mental } \\ \text { strategies (with or without jottings). }\end{array} \\ \hline \text { Horizontal } & \begin{array}{l}\text { Horizontal refers to planes and } \\ \text { line segments that are parallel to } \\ \text { the horizon. }\end{array} & \begin{array}{l}\text { The x-axis on a graph should be b } \\ \text { horizontal. }\end{array} \\ \hline \text { Killimetre } & \begin{array}{l}\text { In geometry, irregular is a term } \\ \text { used to describe shapes that } \\ \text { are not regular (see below). }\end{array} & \begin{array}{l}\text { The sides and the angles of this } \\ \text { pentagon are not all equal so the } \\ \text { pentagon is irregular. }\end{array} \\ \hline \text { Irregular } & \begin{array}{l}\text { A metric unit measure of length } \\ \text { that is equal to one thousand } \\ \text { metres. }\end{array} & \begin{array}{l}\text { A metric unit measure of length } \\ \text { that is equal to one thousandth } \\ \text { of one metre. }\end{array} \\ \text { The distance from the school to Arun's } \\ \text { house was exactly one kilometre. }\end{array} \right\rvert\, \begin{array}{l}\text { The length of Philippa's ruler is 300 } \\ \text { millimetres. }\end{array}\right\}$

Numeral	A numeral is a symbol (or group of symbols) used to represent a number.	Whole numbers can all be represented as numerals consisting of the digits 0 to 9.
Obtuse angle	An angle that is greater than a right angle but less than 180 degrees.	It is greater than my right angle checker so this angle must be obtuse.
Parallel	Line segments that can be described as parallel must be on the same plane and will never meet, regardless of how far either or both line segments are extended.	The opposite sides of a square are parallel.
Perimeter	The perimeter of a 2-D shape is the total distance around its exterior.	I know that one side of this square is 2 cm so it must have a perimeter of 8 cm .
Perpendicular	A pair of line segments (or surfaces) can be described as perpendicular if they intersect at (or form) a right angle.	The adjacent sides of a rectangle are perpendicular.
Place holder	A place holder is a zero used in any place value column (that contains a value of zero) to clarify the relative positions of the digits in other places.	I need to use a place holder in the ones column to make it clear that my number is 320 and not 32 .
Prism	A prism is a 3-D solid with two identical, parallel bases and otherwise rectangular faces.	A triangular prism has five faces, consisting of three rectangles and two triangles which are parallel.
Product	The result you get when you multiply two numbers.	24 is the product of 3 and 8.
Regular	Regular 2-D shapes (regular polygons) have angles that are all equal and side lengths that are all equal. Regular 3-D shapes (the Platonic Solids) are those that have congruent (exactly the same) faces of a single regular polygon.	A square is a regular 2-D shape because all four angles are right angles and all four sides are the same length. A cube is a regular 3-D shape with six identical square faces.
Roman numeral	Roman numerals are a system of symbols used to represent numbers that were developed and used by the Romans. They do not use a place value system.	The number twelve on this clock is represented by the Roman numerals XII, which is $10+1+1$.
Round	Approximate a number, normally to the nearest multiple of ten, to make it easier with which to calculate.	I would round the number 17 to 20 because it is three away from 20 but seven away from 10.
Square-based pyramid	A pyramid is a 3-D shape with a 2-D shape (which gives the pyramid its name) as a base	This square-based pyramid has five faces; one square face and four triangular faces.
Triangle-based pyramid	and triangular faces that taper to a point called a vertex or apex.	This triangle-based pyramid has four triangular faces.

Year 4	Definition	Example
Area	The space a surface takes up inside its perimeter. Area is always measured in square units.	The area is 8 square units.
Associative law	No matter how the parts in an addition or multiplication equation are grouped, the answer will be the same.	$\begin{aligned} & (6+3)+2=11 \\ & 6+(3+2)=11 \end{aligned}$ Addition and multiplication are associative. Subtraction and division are not.
Convert	To change from one unit of measurement to another.	2 km can be converted to metres - it is equal to 2000 m .
Coordinate	The position of a point, usually described using pairs of numbers. Sometimes called Cartesian coordinates, after the mathematician Rene Descartes.	The coordinate $(3,4)$ describes a point that is 3 on the x axis and 4 on the y axis.
Decimal fraction	A fraction expressed in its decimal form.	Half written as a decimal fraction is 0.5.
Distributive law	The process whereby adding some numbers and then multiplying the sum gives the same answer as multiplying the numbers separately and then adding the products.	$\begin{aligned} & 3 \times(2+4)=(3 \times 2)+(3 \times 4) \\ & 3 \times 12=(3 \times 10)+(3 \times 2) \end{aligned}$
Dividend	The amount that you want to divide.	In '12 $\div 3=4$ ', 12 is the dividend.
Divisor	The number you divide by.	In ' $12 \div 3=4$ ', 3 is the divisor.
Equilateral	Having all sides the same length.	An equilateral triangle has three equal sides.
Equivalent	Equivalent means having the same value. Equivalent fractions have the same value.	$\frac{2}{4}=\frac{1}{2}$
Expression	One or a group of numbers, symbols or operators. An expression does not use equality or inequality signs. Using an equality or inequality sign will give an equation.	$\begin{aligned} & 2 \times 3 \\ & 4^{2} \end{aligned}$
Grid	A series of evenly divided and equally spaced shapes, usually squares.	
Improper fraction	A fraction where the numerator is bigger than the denominator. These fractions are therefore greater than one whole.	$\frac{12}{11}$
Integer	A whole number that can be positive or negative.	6 is an integer, 0.6 is not.
Interval	An interval on a graph's axis lies between two values.	If one point on an axis is 50 and the next 60 , the interval is 10.

Isosceles	Having two sides of equal length. Isosceles triangles have two equal sides; isosceles trapezia have two equal, non- parallel sides.	
	A 2-D shape with two pairs of equal length adjacent sides. The diagonals intersect at right angles.	
Kite	A graph that uses lines to connect the points on a data chart. Used to present continuous data, such as change over time.	Numbers consisting of an integer and fractional part.
Line graph	A number that is less than zero. (It is helpful to refer to these numbers as 'negative numbers' rather than 'minus' to avoid confusion with the operation 'minus'.)	$-1,-24,-0.5$ etc.
Negative number		

Mathematics
Mastery

Rhombus	An equilateral parallelogram with four equal length sides.	
Scalene	A scalene triangle has three unequal sides and three unequal angles.	Δ
Short division	A formal written layout where the quotient is calculated showing only one written step.	$5 \longdiv { 3 8 5 }$
Short multiplication	A formal written layout where the multiplier is usually 9 or less.	$\begin{array}{r} 782 \\ \times \quad 9 \\ \hline 7038 \end{array}$
Simplify	To write a number or equation in its simplest form.	I can simplify $\frac{8}{10}$ to $\frac{4}{5}$.
Square centimetre	A unit of measure for area equal to a square with the dimensions 1 cm by 1 cm .	Sometimes referred to as centimetre squared, abbreviated to $\mathbf{c m}^{2}$.
Trapezium	A quadrilateral with exactly one pair of parallel sides.	

Year 5	Definition	Example
Angle at a point	Angles that meet at a point that sum to 360°.	Angles formed on a straight line that sum to 180°.
Angle on a line	A measure of central tendency. The mean average of a set of data is the sum of the quantities divided by the number of quantities.	The mean average of the set 4, 5, 5, 6 is 5 because $(4+5+5+6) \div 4=5$.
Average (mean)		
numbers.		

	which measures $1 \mathrm{~cm} \times 1 \mathrm{~cm} \times$ 1 cm .	
Cubic metre	A unit used to measure volume. The space taken up by a cube with edges of length 1 metre.	The volume of this fridge is two cubic metres.
Decagon	A polygon with ten sides and ten angles.	
Degree	The unit of measure for angles.	A right angle is 90 degrees.
Diagonal	A straight line segment that joins one vertex to another.	The diagonals kite are perpendicular
Divisible	A number is said to be divisible by another if it can be divided by that number without a remainder.	24 is divisible by 8 . When divided by 8 it gives a quotient of 3 , with no remainder.
Dodecagon	A polygon with twelve sides and twelve angles.	
Long division	The formal written algorithm that can be used to divide by a number with two or more digits.	$\begin{array}{r} 34 \\ 12 \begin{array}{\|r\|} \hline 408 \\ 36 \\ 48 \\ 48 \end{array} \\ \hline 0 \end{array}$
Long multiplication	The formal written algorithm that can be used to multiply a number by a number with two or more digits.	$\begin{array}{r} 34 \\ \times \quad 12 \\ \hline 68 \\ 340 \\ \hline 408 \end{array}$
Negative integer	A whole number with a value less than zero. Zero is neither positive nor negative.	When the temperature falls below $0^{\circ} \mathrm{a}$ negative integer is used to record it.
Nonagon	A polygon with nine sides and nine angles.	
Percentage	The number of parts per hundred which is written using the \% symbol.	30\% means for every 100 there are 30.
Polygon	A 2-D shape with three or more straight sides.	Triangles and rectangles are examples of polygons.
Polyhedron (pl. polyhedra)	A 3-D shape with flat surfaces that are polygons.	A cuboid is a polyhedron. A cylinder is not a polyhedron because it has a curved surface.
Prime factor	A factor that is a prime number.	3 and 2 are prime factors of 6.

Prime number	A whole number with only two factors, one and the number itself.	2, 3, $5,7,11,13,17$ and 19 are the prime numbers less than 20.	
Remainder	The amount remaining after division when a whole number answer is needed.	A mirror image that is equidistant from a mirror line. remainder of 1.	The shape has been reflected in the dotted mirror line.
Reflection	An angle that is greater than 180		
Reflex angle			

N
Mathematics
Mastery

Year 6	Definition	Example
Arc	A portion of the circumference of a circle	\square
Brackets	The symbols () used to separate parts of a multi-step calculation.	$(10-2) \times 3=21$
Centre	In a circle, the centre refers to one point that is equidistant to all points around the circumference of the circle.	To draw a circle, I place the point of my pair of compasses at the centre.
Circumference	The perimeter/boundary of a circle.	\square
Compasses	A tool for creating curved lines, arcs and circles.	I can use a pair of compasses to draw a circle with a radius of 4 cm .
Common fraction	A fraction written with a numerator and denominator separated by a vinculum.	One quarter can be written as a common fraction, $\frac{1}{4}$.
Degree of accuracy	A description of how accurately a value is communicated.	The degree of accuracy needed for the answer is one decimal place.
Diameter	A line from one point of the circumference of a circle to another on the opposite side, which must pass through the centre of the circle.	The circumference of a circle is the diameter multiplied by pi.
Equivalent expression	An expression, which can be algebraic, which is equal in value to another expression.	Find an equivalent expression to $17+$ 10. $18+9$ is an equivalent expression to $17+10$.
Factorise	To identify factors of a given number. To express a number as factors.	I can factorise 12 by looking at its factor pairs. $1 \times 12=12,2 \times 6=12,3 \times 4=12$. So the factors of 12 are $1,2,3,4,6$ and 12.
Foot/feet	An imperial unit of measure of length.	I am approximately five feet tall.
Formula	An algebraic expression of a rule.	The area of a rectangle can be found by multiplying the width and height. $a=w \times h$
Gallon	An imperial unit of measure of volume/capacity.	A gallon is approximately 4.5 litres
Imperial unit	A unit of measure once officially used in the UK but is now used less often, except in the context of length. Includes miles, pounds and pints.	Miles are an imperial unit to measure length.
Inch	An imperial unit of measure.	An inch is approximately 2.2 cm .
Intersect	The point at which two (or more) lines meet is where they intersect.	The x and y axes intersect at $(0,0)$

Metric unit	A standard unit of measure used in the UK and Europe. Includes centimetres, litres and kilograms.	Litres are a metric unit used to measure volume.
Mile	An imperial unit of measure of length.	Five miles is equivalent to eight kilometres.
Net	A group of 2-D shapes which, when folded and connected, forms a 3-D polyhedron.	The net of a cube is comprised of six connected squares.
Order of operations	The internationally agreed order to complete operations in a multi-step equation with multiple operations.	$(3+4) \times 2=\square$ The order of operations dictates that the operation within the brackets is completed first.
Origin	The point at which axes in a coordinates grid cross; the point $(0,0)$.	The origin is indicated by the blue dot.
Ounce	An imperial unit of measure of mass.	The newborn baby had a mass of 6 pounds and 3 ounces.
Pie chart	A representation of a set of data where each segment represents one group in proportion to the whole.	Nationality of Astronauts on Board ISS January 2017
Pint	An imperial unit of measure.	I found a pint of milk on my doorstep.
Pound (mass)	An imperial unit of measure of mass.	The new-born baby had a mass of 6 pounds and 3 ounces.
Proportion	A comparison between two or more parts of a whole or group. Proportion expresses a partwhole relationship. This may be represented as a fraction, a percentage or a decimal.	Two thirds of a class were boys. The proportion of the class that is girls is one third.
Quadrant	One of four regions into which a coordinates grid is divided.	

Radius	A line from one point of the circumference of a circle to the centre of the circle.	
Ratio	A comparison between two or more parts of a whole or group. Ratio expresses a part-part relationship. This is usually represented in the form a:b.	For every 4 tulips there are 7 daffodils. The ratio of tulips to daffodils is $4: 7$.
Similar	Similar shapes are those which have the same internal angles and where the side lengths are in the same ratio or proportion. Enlarging a shape by a scale factor (for example by doubling all side lengths) creates a similar shape.	All squares are similar to one another.
Square millimetre	The area of a square with sides 1 mm .	The smallest squares on graph paper have an area of one square millimetre.
Square kilometre	The area of a square with sides 1 km .	The area of England is 130279 square kilometres.
Vertically opposite angles	Angles which are positioned opposite to one another when two lines intersect.	The purple angles indicated are vertically opposite angles.

